# **Application Details**

# Manage Application: Textbook Transformation Grants: Round Eleven

| <u> </u>                                |                                               |  |
|-----------------------------------------|-----------------------------------------------|--|
| Award Cycle:                            | Round 11                                      |  |
| Internal Submission<br>Deadline:        | Tuesday, January 23, 2018                     |  |
| Application Title:                      | 350                                           |  |
| Application ID:                         | 002065                                        |  |
| Submitter First Name:                   | Scott                                         |  |
| Submitter Last Name:                    | Kersey                                        |  |
| Submitter Title:                        | Associate Professor of Mathematics            |  |
| Submitter Email Address:                | skersey@georgiasouthern.edu                   |  |
| Submitter Phone Number:                 | 912-478-1963                                  |  |
| Submitter Campus Role:                  | Proposal Investigator (Primary or additional) |  |
| Applicant First Name:                   | Scott                                         |  |
| Applicant Last Name:                    | Kersey                                        |  |
| Applicant Email Address:                | skersey@georgiasouthern.edu                   |  |
| Applicant Phone Number:                 | 912-478-1963                                  |  |
| Primary Appointment Title:              | Associate Professor of Mathematics            |  |
| Institution Name(s):                    | Georgia Southern University                   |  |
| Co-Applicant(s):                        | Rami Haddad                                   |  |
| Submission Date:                        | Tuesday, January 23, 2018                     |  |
| Proposal Title:                         | 350                                           |  |
| Proposal Category:                      | No-Cost-to-Students Learning Materials        |  |
| Final Semester of<br>Instruction:       | Fall 2018                                     |  |
| Are you using an OpenStax<br>textbook?: | Yes                                           |  |
| eam Members (Name, Email Address):      |                                               |  |

#### Team Members (Name, Email Address):

Scott Kersey, Associate Professor of Mathematics, Department of Mathematical Sciences, skersey@georgiasouthern.edu

Rami Haddad, Assistant Professor of Electrical Engineering, Department of Electrical and Computer Engineering, rhaddad@georgiasouthern.edu

#### Sponsor, (Name, Title, Department, Institution):

Sharon Taylor, Professor and Chair, Department of Mathematical Sciences, Georgia Southern University

Youakim Kalaani, Associate Professor and Chair, Department of Electrical and Computer Engineering, Georgia Southern University

#### **Course Names, Course Numbers and Semesters Offered:**

Calculus I, MATH 1441, Fall, Spring, and Summer semesters (special sections for Engineering students to be piloted Fall 2018)

| List the original course<br>materials for students<br>(including title, whether<br>optional or required, & cost<br>for each item): | Thomas' Calculus with MyMathLab on line<br>homework system access (\$288.40) or<br>MyMathLab Student Access Kit (\$106.90).<br>Required. |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Average Number of<br>Students per Course<br>Section:                                                                               | 50                                                                                                                                       |
| Number of Course<br>Sections Affected by<br>Implementation in<br>Academic Year:                                                    | 2 (Upon successful implementation more sections will be added)                                                                           |
| Average Number of<br>Students Per Summer<br>Semester:                                                                              | 0                                                                                                                                        |
| Average Number of<br>Students Per Fall<br>Semester:                                                                                | 100                                                                                                                                      |
| Average Number of<br>Students Per Spring<br>Semester:                                                                              | 0                                                                                                                                        |
| Total Number of Students<br>Affected by Implementation<br>in Academic Year:                                                        | 100 (Upon successful implementation more students would be affected)                                                                     |
| Requested Amount of<br>Funding:                                                                                                    | 10800                                                                                                                                    |
| Original per Student Cost:                                                                                                         | \$106.90-\$288.40                                                                                                                        |
| Post-Proposal Projected<br>Student Cost:                                                                                           | \$0                                                                                                                                      |
|                                                                                                                                    | 2 of 24                                                                                                                                  |

# Projected Per Student \$106.90-\$288.40 Savings:

Projected Total Annual\$10690-\$28840 for 100 students in pilotStudent Savings:courses. (We expect this will be hundreds of<br/>thousands in the future)

## Creation and Hosting Platforms Used ("n/a" if none):

**Microsoft, Apple, Linux Operating Systems**: Our course materials and software will run equally-well on these operating systems. While Microsoft and Apple are not free, Linux is free and open source and used by both team members.

**Desire2Learn (D2L, Folio) [4]:** Virtual Classroom at Georgia Southern University [1]. This will be used for additional notes, handouts, modules and videos associated with the implementation of this project.

**Google Drive**: Some materials may also be stored on the university Google drive for easy access and sharing with faculty.

Faculty Web Pages: Team members will put materials on their university web pages.

**WeBWorK [2]**: Open-source online homework management system with Open Problem Library. The library currently contains over 40,000 mathematics and science problems [3], and includes an editor for writing problems tailored to ones' course. The program was recently installed at our university, and administered by a team member (S. Kersey), who has completed a WeBWorK system administrator training course hosted by the Mathematical Association (MAA). This is an open source program that is free for students and the university. WeBWorK homework problems for the OpenStax Calculus I textbook were developed by one of the team members (S. Kersey) in a previous ALG grant [8].

**Matlab [5], Octave [6]**: Matlab is a scientific programming language that engineers commonly use and we will use in our course transformation. It is freely available to our students at Georgia Southern on campus and therefore is free to students in our implementation. Students off campus who do not have access to Matlab can use Octave, which is open-source and has nearly identical functionality as Matlab; i.e, the programs used in our implementation will work in either Matlab or Octave. Therefore, our implementation is zero-cost for students on or off campus.

# **Project Goals:**

Develop a new STEM mathematics class *Calculus I* (*for Engineers*) using zero cost-tostudent open education resources (OER) based on input from both engineering and mathematics faculty by replacing two sections of *Calculus I* in the Fall 2018 semester with two sections of our new *Calculus I* (*for Engineers*) in the Fall 2018 semester, to be taught by the team members. Save students money on course materials by replacing the current textbook and homework system with free open source course materials.

Improve the performance of students in engineering classes that use *Calculus I (for Engineers)* as a prerequisite by providing course content tailored to their needs in their engineering classes.

Improve the success rate for engineering students in Calculus I who take our new sections on *Calculus I (for Engineers)*.

Improve the perception of engineering faculty on the quality of the mathematics classes and mathematics faculty involved in preparing their students for the mathematics they need in their engineering classes and careers by using our OER *Calculus I (for Engineers)* course materials.

Include engineering faculty in a control loop decision-making process designed to develop course topics based on students' needs by sharing OER course materials using creative commons (CC) licensing.

Create new textbook materials, notes, worksheets, videos, assignments and projects based on input from engineering and mathematics faculty.

Develop new homework problems in WeBWorK that can be shared by other faculty in and outside our institution.

Develop new computer projects in Matlab/Octave that can be shared by other faculty in and outside our institution. Matlab is free only for students and Georgia Southern, while Octave is free open-source software that has the similar functionality.

Develop assessment methods to measure the impact of these changes on student success and faculty perceptions.

Upon completion of this project, we plan to share course materials with faculty and students inside and outside our institution.

Upon completion of this project, we plan to publish the results from our project.

Upon completion of this project, we plan to expand the number of sections of our OER *Calculus I (for Engineers)*.

Upon completion of this project, we plan to develop OER materials for other STEM classes.

### **Statement of Transformation:**

Description: Revise the course content and replace the current (non-free) textbooks and homework systems for *Calculus I* by existing and newly developed OER course materials for *Calculus I* (for Engineers).

The primary stakeholders are engineering students who will benefit from course material tailored for their needs, including easily accessible open source content, and from a reduced financial burden. With the new course content, students will be better prepared in their engineering classes.

The secondary stakeholders are mathematics and engineering faculty. With all resources online, there will be no delay in acquiring textbooks or homework access codes, so the instruction and assignment can begin on day one of the semester. Additionally, engineering faculty benefit by having more input into the mathematics curriculum, allowing better prepared engineering students.

The primary impact for students is the opportunity to learn *Calculus I* with course content structured around the specific needs and applications of the engineering curriculum. The secondary impact for students is reduced financial burden. With 90% of incoming students at Georgia Southern receiving some kind of financial aid in 2014-2015 [7], costs are clearly a major factor affecting the student success. As well, by giving engineering students a better learning experience in *Calculus I*, and they will be better prepared to follow the course sequence to upper level classes in other math courses and courses in their engineering major.

The impact for engineering faculty is having students in their classes who are better prepared in the mathematics they need for their upper level engineering classes.

The impact for mathematics faculty is improved student interest in learning calculus due to the emphasis on topics in their major, and a reduced emphasis on theory in Calculus I in lieu of applications.

The impact for our departments and institution includes easier access and greater enrollment for students in the courses using the free-open source material. As well, with better prepared engineering students, the quality of students and program will be enhanced.

Upon success of our pilot run, our OER *Calculus I (for Engineers)* can be extended to more sections, and adapted to other mathematics courses for STEM majors. This has the potential to greatly enhance students' success in their engineering programs.

### **Transformation Action Plan:**

As a first step to our action plan, team members will be researching existing books for *Calculus for Engineers*, and get input and suggestions from other engineering and mathematics faculty.

The next step is the development of our OER *Calculus I (for Engineers)* course materials. Following the development of course materials, we will create course syllabi, schedules, and materials. This will include course organization, expectations, and goals for new open-source transformation.

Team members will administer standard testing instruments in the semester prior to implementing the new open-source materials.

S. Kersey will be instructor of record for *Calculus I (for Engineers)*. Both R. Haddad and S. Kersey will be involved in the development of the course materials and instruction.

At the final stages of implementation, open-source materials will be stored in central locations and made available to faculty.

| Upon completion of this project at the end of<br>the Fall 2018 semester, both quantitative and<br>qualitative measures will be applied to<br>assess the efficacy of the transformation to<br>OER Calculus I (for Engineers). We will<br>compare results from classes using<br>traditional Calculus I materials with those<br>using the Calculus I (for Engineers) materials<br>outlined in this proposal.Quantitative<br>measures:Comparison of student<br>performance on mathematical engineering<br>problems.Comparison of pre- and post-<br>content tests for each class, broken down by<br>course learning objectives.Comparison of<br>scores on a common Final<br>Exam.Comparison of DFW (Drop, Fail,<br>Withdrawal) rates between<br>classes.Qualitative measures:Comparison of<br>surveys on student attitudes and opinions<br>regarding course materials.Survey on |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# Timeline:

| Spring 2018 | Attend kick-off meeting, February 26.                                                                                                                                       |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|             | Arrange for two sections of <i>Calculus I (for Engineers)</i> for the Fall 2018 semester. Note: we have already received department and college approvals for this project. |  |
|             | Review textbooks and course materials on<br>Calculus for Engineers, and select an open<br>source textbook or develop our own.                                               |  |
|             | Solicit input from engineering and mathematics faculty.                                                                                                                     |  |
|             | Develop sample course materials, including<br>homework questions, WeBWorK problems,<br>projects, videos and notes.                                                          |  |
| Summer 2018 | Complete preparation of course materials.                                                                                                                                   |  |
|             | Prepare course syllabi                                                                                                                                                      |  |
|             | Prepare assessment instruments.                                                                                                                                             |  |
| Fall 2018   | Carry out instruction in two sections of<br>Calculus I (for Engineers).                                                                                                     |  |

| Give content pre-tests and post-test to students, as well as engineering content tests. |  |
|-----------------------------------------------------------------------------------------|--|
| Analyze the data and prepare reports.                                                   |  |

#### Budget:

| Dr. Scott Kersey | Compensation for preparation time.                 | \$5000 |
|------------------|----------------------------------------------------|--------|
| Dr. Rami Haddad  | Compensation for preparation time.                 | \$5000 |
| liravel          | Kick-off meeting, conference travel, and Supplies. | \$800  |

#### **Sustainability Plan:**

After completion of this project, no additional costs are required. Course information and materials will be posted at central locations for faculty to use.

Our OER Calculus I (for Engineers) materials will be freely available.

Matlab/Octave Programs and WeBWorK problems will be freely available.

Course materials, such as syllabi, weekly schedules, additional notes, modules, programs, videos, and surveys will be made freely available to faculty through university storage,

Google drive, Desire2Learn course templates, and faculty web pages.

Team members will maintain point of contact for faculty interested in adoption of our OER *Calculus I (for Engineers)* materials for future years.

Team members will advocate for additional sections of *Calculus I (for Engineers)* in the future semesters.

Final Semester of Spring 2017 Instruction:



P.O. BOX 8093 STATESBORO, GEORGIA 30460-8093 TELEPHONE (912) 478-5390 FAX (912) 478-0654 http://cosm.georgiasouthern.edu/math

January 9, 2018

To Whom It May Concern:

This letter is in support of the Affordable Learning Georgia Grant submitted by Dr. Scott Kersey and Dr. Rami Haddad. Not only am I enthusiastic about their *Calculus I for Engineers* project, but I am thrilled by the collaboration of faculty in two different departments and colleges.

Dr. Kersey has extensive experience with the WeBWorK online homework system from the Mathematical Association of America (MAA). The problems that have already been created and are available in WeBWork are quite useful. However, the ability to create and add additional problems has been an invaluable tool for Dr. Kersey and his students. As opposed to other online homework systems, WeBWorK is free of charge to students.

In addition to the online homework system, Drs. Kersey and Haddad plan to develop materials to use with MATLAB. MATLAB is a numerical computing environment specifically designed for scientists and engineers. Georgia Southern has a site license for the software, so there is no cost to students to use the package. This is a considerable savings when compared to the purchase and use of handheld technology, such as a graphing calculator.

Anticipating Drs. Kersey and Haddad's successful implementation of their efforts during Fall 2018, we expect to recruit additional faculty to participate in the program. Faculty from our College of Science and Mathematics as well as engineering faculty from the Allen E. Paulson College of Engineering and Information Technology have expressed a desire to work more collaboratively to ensure engineering students are successful once they leave their mathematics classes and pursue engineering classes. Given the no cost approach to this collaborative effort, I anticipate several faculty who would wish to participate in this approach.

Not only is Dr. Kersey dedicated to lowering costs for students and collaborating with colleagues, he is an excellent instructor. His willingness to try new ideas has led to his nomination for our university award for Excellence in Contributions to Instruction. I believe this combination of dedication to students as well as to teaching speaks very highly of Dr. Kersey and his accomplishments.

Dr. Kersey has already used OpenStax and WeBWorK with a previous ALG grant. He is in the process of analyzing data from his pilot implementation in Fall 2017. His prior experience with the online book and homework system, as well as his previous grant work, can only be an asset to this project.

I support Drs. Kersey and Haddad's efforts to transform certain sections of Calculus I to increase success and retention of engineering majors. I especially applaud their efforts to do so at no cost to students.

Please feel free to contact me if you need additional information.

Sincerely,

Alavon Saylor

Sharon Taylor Department Chair



Post Office Box 8045 Statesboro, GA 30460 Telephone: (912) 478-5373

#### MEMORANDUM

Fax: (912) 478-0537

TO: Affordable Learning Georgia Textbook Transformation Grants

FROM: Youakim Kalaani, Chair

**RE:** Support Letter

DATE: January 9, 2018

This letter is to express my strong support for the Affordable Learning Georgia Textbook Transformation Grant submitted as a joint efforts by two faculty from the departments of Mathematics and the Electrical & Computer Engineering at Georgia Southern University.

If funded, this project will not only transform the way mathematics is being introduced to engineering but it will also help reduce cost by making open-source material available to students. Dr. Rami Haddad who has extensively been involved in STEM related activities is a strong advocate for tailoring mathematic courses to fit the need of engineering students. His renewed and innovative teaching methods have greatly contributed to the success of his students and thus, this project will significantly improve education by making mathematics more meaningful and appealing to engineering students.

I am very pleased and excited about this project and will provide support and resources to achieve the goals stated by the principal investigators of this grant.

Sincerely,

Jour him Kalan

Dr. Youakim Kalaani, Chair **Electrical and Computer Engineering Department** Phone: (912) 478-0006 Email: yalkalaani@GeorgiaSouthern.edu

#### Affordable Learning Georgia Textbook Transformation Grants Round Eleven For Implementations beginning Spring Semester 2018 Running Through Fall Semester 2018

# **Proposal Form and Narrative**

| Submitter Name                  | Scott Kersey                                                                                                                                                                                                                                                                                         |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Submitter Title                 | Associate Professor of Mathematics                                                                                                                                                                                                                                                                   |
| Submitter Email                 | skersey@georgiasouthern.edu                                                                                                                                                                                                                                                                          |
| Submitter Phone<br>Number       | 912-478-1963912-478-1963                                                                                                                                                                                                                                                                             |
| Submitter<br>Campus Role        | Proposal Investigator (Primary)                                                                                                                                                                                                                                                                      |
| Applicant Name                  | Scott Kersey                                                                                                                                                                                                                                                                                         |
| Applicant Email                 | skersey@georgiasouthern.edu                                                                                                                                                                                                                                                                          |
| Applicant Phone<br>Number       | 912-478-1963                                                                                                                                                                                                                                                                                         |
| Primary<br>Appointment<br>Title | Associate Professor of Mathematics                                                                                                                                                                                                                                                                   |
| Institution<br>Name(s)          | Georgia Southern University                                                                                                                                                                                                                                                                          |
| Team Members                    | Scott Kersey, Associate Professor of Mathematics, Department of<br>Mathematical Sciences, <u>skersey@georgiasouthern.edu</u><br>Rami Haddad, Assistant Professor of Electrical and Computer<br>Engineering, Department of Electrical and Computer Engineering,<br><u>rhaddad@georgiasouthern.edu</u> |
| Open Education Re               | sources (OER) Development and Implementation for STEM Calculus for                                                                                                                                                                                                                                   |

Engineers

| Department,<br>Institution<br>Proposal Title<br>Course Names,                                                                              | <ul> <li>Sharon Taylor, Professor and Chair, Department of Mathematical Sciences, Georgia Southern University</li> <li>Youakim Kalaani, Associate Professor and Chair, Department of Electrical and Computer Engineering, Georgia Southern University</li> <li>Open Education Resources (OER) Development and Implementation for STEM Calculus for Engineers</li> <li>Calculus I, MATH 1441, Fall, Spring, and Summer semesters (special sections for Engineering students to be piloted Fall 2018)</li> </ul> |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| and Semesters<br>Offered                                                                                                                   | sections for Engineering students to be photed rail 2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Final Semester of<br>Instruction                                                                                                           | Fall 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Average Number<br>of Students Per<br>Course Section                                                                                        | 50Number of<br>Course Sections<br>Affected by<br>Implementation<br>in Academic Year2Total Number of<br>Students Affected<br>by<br>Implementation in<br>Academic Year100                                                                                                                                                                                                                                                                                                                                        |  |  |
| Award Category<br>(pick one)                                                                                                               | ☑ No-or-Low-Cost-to-Students Learning Materials<br>OpenStax Textbooks<br>□ Interactive Course-Authoring Tools and Software<br>□ Specific Top 100 Undergraduate Courses                                                                                                                                                                                                                                                                                                                                         |  |  |
| List the original<br>course materials<br>for students<br>(including title,<br>whether optional<br>or required, &<br>cost for each<br>item) | Thomas' Calculus with MyMathLab on line homework system access<br>(\$288.40) or MyMathLab Student Access Kit (\$106.90). Required.                                                                                                                                                                                                                                                                                                                                                                             |  |  |

| Requested<br>Amount of<br>Funding              | \$10,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Original Per<br>Student Cost                   | Calculus I: \$106.90-\$288.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Post-Proposal<br>Projected Per<br>Student Cost | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Projected Per<br>Student Savings               | \$106.90-\$288.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Projected Total<br>Annual Student<br>Savings   | \$10690-\$28840 for 100 students in pilot courses. This may expand to additional course offerings in the future.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Hosting Platforms<br>Used                      | <ul> <li>Microsoft, Apple, Linux Operating Systems: Our course materials and software will run equally-well on these operating systems. While Microsoft and Apple are not free, Linux is free and open source and used by both team members.</li> <li>Desire2Learn (D2L, Folio) [4]: Virtual Classroom at Georgia Southern University [1]. This will be used for additional notes, handouts, modules and videos associated with the implementation of this project.</li> <li>Google Drive: Some materials may also be stored on the university Google drive for easy access and sharing with faculty.</li> </ul>                                  |
|                                                | <b>WeBWorK [2]</b> : Open-source online homework management system<br>with Open Problem Library. The library currently contains over 40,000<br>mathematics and science problems [3], and includes an editor for<br>writing problems tailored to ones' course. The program was recently<br>installed at our university, and administered by a team member (S.<br>Kersey), who has completed a WeBWorK system administrator training<br>course hosted by the Mathematical Association (MAA). This is an open<br>source program that is free for students and the university. WeBWorK<br>homework problems for the OpenStax Calculus I textbook were |
| Open Education Re                              | sources (OER) Development and Implementation for STEM Calculus for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Engineers

| developed by one of the team members (S. Kersey) in a previous ALG<br>grant [8].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Matlab [5], Octave [6]: Matlab [5] is a scientific programming language<br>that engineers commonly use and we will use in our course<br>transformation. It is freely available to our students at Georgia<br>Southern on campus and therefore is free to students in our<br>implementation. Students off campus who do not have access to<br>Matlab can use Octave [6], which is open-source and has nearly<br>identical functionality as Matlab; i.e, the programs used in our<br>implementation will work in either Matlab or Octave. Therefore, our<br>implementation is zero-cost for students on or off campus. |

### NARRATIVE

# 1.1 **PROJECT GOALS**

- Develop a new STEM mathematics class *Calculus I* (for Engineers) using zero cost-to-student open education resources (OER) based on input from both engineering and mathematics faculty by replacing two sections of *Calculus I* in the Fall 2018 semester with two sections of our new *Calculus I* (for Engineers) in the Fall 2018 semester, to be taught by the team members.
- Save students money on course materials by replacing the current textbook and homework system with free open source course materials.
- Improve the performance of students in engineering classes that use *Calculus I* (*for Engineers*) as a prerequisite by providing course content tailored to their needs in their engineering classes.
- Improve the success rate for engineering students in Calculus I who take our new sections on *Calculus I (for Engineers)*.
- Improve the perception of engineering faculty on the quality of the mathematics classes and mathematics faculty involved in preparing their students for the mathematics they need in their engineering classes and careers by using our OER *Calculus I (for Engineers)* course materials.
- Include engineering faculty in a control loop decision-making process designed to develop course topics based on students' needs by sharing OER course materials using creative commons (CC) licensing.
- Create new textbook materials, notes, worksheets, videos, assignments and projects based on input from engineering and mathematics faculty.
- Develop new homework problems in WeBWorK that can be shared by other faculty in and outside our institution.
- Develop new computer projects in Matlab/Octave that can be shared by other faculty in and outside our institution. Matlab is free only for students and Georgia Southern, while Octave is free open-source software that has the similar functionality.
- Develop assessment methods to measure the impact of these changes on student success and faculty perceptions.
- Upon completion of this project, we plan to share course materials with faculty and students inside and outside our institution.
- Upon completion of this project, we plan to publish the results from our project.
- Upon completion of this project, we plan to expand the number of sections of our OER *Calculus I* (for Engineers).
- Upon completion of this project, we plan to develop OER materials for other STEM classes.

### 1.2 STATEMENT OF TRANSFORMATION

- Description: Revise the course content and replace the current (non-free) textbooks and homework systems for *Calculus I* by existing and newly developed OER course materials for *Calculus I* (for Engineers).
- The primary stakeholders are engineering students who will benefit from course material tailored for their needs, including easily accessible open source content, and from a reduced financial burden. With the new course content, students will be better prepared in their engineering classes.
- The secondary stakeholders are mathematics and engineering faculty. With all resources on-line, there will be no delay in acquiring textbooks or homework access codes, so the instruction and assignment can begin on day one of the semester. Additionally, engineering faculty benefit by having more input into the mathematics curriculum, allowing better prepared engineering students.
- The primary impact for students is the opportunity to learn *Calculus I* with course content structured around the specific needs and applications of the engineering curriculum.
- The secondary impact for students is the reduced financial burden. With 90% of incoming students at Georgia Southern receiving some kind of financial aid in 2014-2015 [7], costs are clearly a major factor affecting the student success. As well, by giving engineering students a better learning experience in *Calculus I*, and they will be better prepared to follow the course sequence to upper level classes in other math courses and courses in their engineering major.
- The impact for engineering faculty is having students in their classes who are better prepared in the mathematics they need for their upper level engineering classes.
- The impact for mathematics faculty is improved student interest in learning calculus due to the emphasis on topics in their major, and a reduced emphasis on theory in Calculus I in lieu of applications.
- The impact for our departments and institution includes easier access and greater enrollment for students in the courses using our free-open source material. As well, with better prepared engineering students, the quality of students and program will be enhanced.
- Upon success of our pilot run, our OER *Calculus I (for Engineers)* can be extended to more sections, and adapted to other mathematics courses for STEM majors.

This has the potential to greatly enhance students' success in their engineering programs.

# 1.3 TRANSFORMATION ACTION PLAN

- As a first step to our action plan, team members will be researching existing books for *Calculus for Engineers*, and get input and suggestions from other engineering and mathematics faculty.
- The next step is the development of our OER Calculus I (for Engineers) course materials.
- Following the development of course materials, we will create course syllabi, schedules, and materials. This will include course organization, expectations, and goals for new open-source transformation.
- Team members will administer standard testing instruments in the semester prior to implementing the new open-source materials.
- S. Kersey will be instructor of record for *Calculus I (for Engineers)*. Both R. Haddad and S. Kersey will be involved in the development of the course materials and instruction.
- At the final stages of implementation, open-source materials will be stored in central locations and made available to faculty.

Open Education Resources (OER) Development and Implementation for STEM Calculus for Engineers

9

# 1.4 QUANTITATIVE AND QUALITATIVE MEASURES

Upon completion of this project at the end of the Fall 2018 semester, both quantitative and qualitative measures will be applied to assess the efficacy of the transformation to OER *Calculus I (for Engineers)*. We will compare results from classes using traditional *Calculus I* materials with those using the *Calculus I (for Engineers)* materials outlined in this proposal.

Quantitative measures:

- Comparison of student performance on mathematical engineering problems.
- Comparison of pre- and post-content tests for each class, broken down by course learning objectives.
- Comparison of scores on a common Final Exam.
- Comparison of DFW (Drop, Fail, Withdrawal) rates between classes.

Qualitative measures:

- Comparison of surveys on student attitudes and opinions regarding course materials.
- Survey on perceptions of engineering faculty using the new course format.

## 1.5 TIMELINE

| Spring 2018 | Attend kick-off meeting, February 26.Arrange for two sections of Calculus I (for Engineers) for the Fall<br>2018 semester. Note: we have already received departmental<br>and college approvals for this project. |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|             |                                                                                                                                                                                                                   |  |
|             | Review textbooks and course materials on Calculus for<br>Engineers, and select an open source textbook or develop our<br>own.                                                                                     |  |
|             | Solicit input from engineering and mathematics faculty.                                                                                                                                                           |  |
|             | Develop sample course materials, including homework questions, WeBWorK problems, projects, videos and notes.                                                                                                      |  |
| Summer 2018 | Complete preparation of course materials.                                                                                                                                                                         |  |
|             | Prepare course syllabi                                                                                                                                                                                            |  |
|             | Prepare assessment instruments.                                                                                                                                                                                   |  |
| Fall 2018   | Carry out instruction in two sections of <i>Calculus I (for Engineers)</i> .                                                                                                                                      |  |
|             | Give content pre-tests and post-test to students, as well as engineering content tests.                                                                                                                           |  |
|             | Analyze the data and prepare reports.                                                                                                                                                                             |  |

# 1.6 BUDGET

| Dr. Scott Kersey | Compensation for preparation time.                 | \$5000 |
|------------------|----------------------------------------------------|--------|
| Dr. Rami Haddad  | Compensation for preparation time.                 | \$5000 |
| Travel           | Kick-off meeting, conference travel, and Supplies. | \$800  |

# 1.7 SUSTAINABILITY PLAN

After completion of this project, no additional costs are required. Course information and materials will be posted at central locations for faculty to use.

- Our OER Calculus I (for Engineers) materials will be freely available.
- Matlab/Octave Programs and WeBWorK problems will be freely available.
- Course materials, such as syllabi, weekly schedules, additional notes, modules, programs, videos, and surveys will be made freely available to faculty through university storage, Google drive, Desire2Learn course templates, and faculty web pages.
- Team members will maintain point of contact for faculty interested in adoption of our OER *Calculus I (for Engineers)* materials for future years.
- Team members will advocate for additional sections of *Calculus I* (for Engineers) in the future semesters.

## 1.8 REFERENCES & ATTACHMENTS

On-line Resources:

- 1. Georgia Southern: www.georgiasouthern.edu/
- 2. Webwork: webwork.maa.org/
- 3. Open Problem Library: webwork.maa.org/wiki/Open\_Problem\_Library
- 4. Desire2Learn (Folio): https://georgiasouthern.desire2learn.com/
- 5. Matlab: <a href="https://www.mathworks.com/">https://www.mathworks.com/</a>
- 6. Octave: <a href="https://www.gnu.org/software/octave/">https://www.gnu.org/software/octave/</a>
- 7. National Center for Educational Statistics (NCES): nces.ed.gov/collegenavigator.
- 8. S. Kersey and S. Carden, Affordable Learning Grant 277.

See attached letter of support from sponsoring Department Chairs, Dr. Sharon Taylor and Dr. Youakim Kalaani.